Table of Contents
Examples borrowed from:
http://www.statmethods.net/stats/power.html
You can also look at:
http://www.ats.ucla.edu/stat/R/dae/t_test_power.htm

if(!require(pwr)){
 install.packages("pwr",
 repos="http://ftp.heanet.ie/mirrors/cran.r-project.org/")

 #install.packages("pwr", lib="/home/tuusuario/R/x86_64-pc-linux-gnu-
 library/2.15", repos="http://ftp.heanet.ie/mirrors/cran.r-project.org/")
}

#require(pwr, lib="/home/tuusuario/R/x86_64-pc-linux-gnu-gnu-library/2.15")
require(pwr)

What is the power of a one-tailed t-test, with a
significance level of 0.01, 25 people in each group,
and an effect size equal to 0.75?

pwr.t.test(n=25,d=0.75,sig.level=.01,alternative="greater")
cat("</br></br>")

Using a two-tailed test proportions, and assuming a
significance level of 0.01 and a common sample size of
30 for each proportion, what effect size can be detected
with a power of .75?

pwr.2p.test(n=30,sig.level=0.01,power=0.75)
cat("</br></br>")

For a one-way ANOVA comparing 5 groups, calculate the
sample size needed in each group to obtain a power of
0.80, when the effect size is moderate (0.25) and a
significance level of 0.05 is employed.

pwr.anova.test(k=5,f=.25,sig.level=.05,power=.8)
cat("</br></br>")

Two-sample t test power calculation

n = 25
d = 0.75
sig.level = 0.01
 power = 0.5988572
 alternative = greater

NOTE: n is number in *each* group

Difference of proportion power calculation for binomial distribution
(arcsine transformation)

 h = 0.8392269
 n = 30
 sig.level = 0.01
 power = 0.75
 alternative = two.sided

NOTE: same sample sizes

Balanced one-way analysis of variance power calculation

 k = 5
 n = 39.1534
 f = 0.25
 sig.level = 0.05
 power = 0.8

NOTE: n is number in each group