Table of Contents
```r
# What is the power of a one-tailed t-test, with a
# significance level of 0.01, 25 people in each group,
# and an effect size equal to 0.75?

pwr.t.test(n=25,d=0.75,sig.level=.01,alternative="greater")
cat("</br></br>")

# Using a two-tailed test proportions, and assuming a
# significance level of 0.01 and a common sample size of
# 30 for each proportion, what effect size can be detected
# with a power of .75?

pwr.2p.test(n=30,sig.level=0.01,power=0.75)
cat("</br></br>")

# For a one-way ANOVA comparing 5 groups, calculate the
# sample size needed in each group to obtain a power of
# 0.80, when the effect size is moderate (0.25) and a
# significance level of 0.05 is employed.

pwr.anova.test(k=5,f=.25,sig.level=.05,power=.8)
cat("</br></br>")
```

Two-sample t test power calculation

\[
\begin{align*}
n &= 25 \\
d &= 0.75
\end{align*}
\]
sig.level = 0.01
 power = 0.5988572
 alternative = greater

NOTE: n is number in *each* group

Difference of proportion power calculation for binomial distribution
(arcsine transformation)

 h = 0.8392269
 n = 30
 sig.level = 0.01
 power = 0.75
 alternative = two.sided

NOTE: same sample sizes

Balanced one-way analysis of variance power calculation

 k = 5
 n = 39.1534
 f = 0.25
 sig.level = 0.05
 power = 0.8

NOTE: n is number in each group